136 research outputs found

    Phase Retrieval From Binary Measurements

    Full text link
    We consider the problem of signal reconstruction from quadratic measurements that are encoded as +1 or -1 depending on whether they exceed a predetermined positive threshold or not. Binary measurements are fast to acquire and inexpensive in terms of hardware. We formulate the problem of signal reconstruction using a consistency criterion, wherein one seeks to find a signal that is in agreement with the measurements. To enforce consistency, we construct a convex cost using a one-sided quadratic penalty and minimize it using an iterative accelerated projected gradient-descent (APGD) technique. The PGD scheme reduces the cost function in each iteration, whereas incorporating momentum into PGD, notwithstanding the lack of such a descent property, exhibits faster convergence than PGD empirically. We refer to the resulting algorithm as binary phase retrieval (BPR). Considering additive white noise contamination prior to quantization, we also derive the Cramer-Rao Bound (CRB) for the binary encoding model. Experimental results demonstrate that the BPR algorithm yields a signal-to- reconstruction error ratio (SRER) of approximately 25 dB in the absence of noise. In the presence of noise prior to quantization, the SRER is within 2 to 3 dB of the CRB

    Directional Bilateral Filters

    Full text link
    We propose a bilateral filter with a locally controlled domain kernel for directional edge-preserving smoothing. Traditional bilateral filters use a range kernel, which is responsible for edge preservation, and a fixed domain kernel that performs smoothing. Our intuition is that orientation and anisotropy of image structures should be incorporated into the domain kernel while smoothing. For this purpose, we employ an oriented Gaussian domain kernel locally controlled by a structure tensor. The oriented domain kernel combined with a range kernel forms the directional bilateral filter. The two kernels assist each other in effectively suppressing the influence of the outliers while smoothing. To find the optimal parameters of the directional bilateral filter, we propose the use of Stein's unbiased risk estimate (SURE). We test the capabilities of the kernels separately as well as together, first on synthetic images, and then on real endoscopic images. The directional bilateral filter has better denoising performance than the Gaussian bilateral filter at various noise levels in terms of peak signal-to-noise ratio (PSNR)

    Data Interpolants -- That's What Discriminators in Higher-order Gradient-regularized GANs Are

    Full text link
    We consider the problem of optimizing the discriminator in generative adversarial networks (GANs) subject to higher-order gradient regularization. We show analytically, via the least-squares (LSGAN) and Wasserstein (WGAN) GAN variants, that the discriminator optimization problem is one of interpolation in nn-dimensions. The optimal discriminator, derived using variational Calculus, turns out to be the solution to a partial differential equation involving the iterated Laplacian or the polyharmonic operator. The solution is implementable in closed-form via polyharmonic radial basis function (RBF) interpolation. In view of the polyharmonic connection, we refer to the corresponding GANs as Poly-LSGAN and Poly-WGAN. Through experimental validation on multivariate Gaussians, we show that implementing the optimal RBF discriminator in closed-form, with penalty orders mn2m \approx\lceil \frac{n}{2} \rceil , results in superior performance, compared to training GAN with arbitrarily chosen discriminator architectures. We employ the Poly-WGAN discriminator to model the latent space distribution of the data with encoder-decoder-based GAN flavors such as Wasserstein autoencoders

    Neuromorphic Sampling of Signals in Shift-Invariant Spaces

    Full text link
    Neuromorphic sampling is a paradigm shift in analog-to-digital conversion where the acquisition strategy is opportunistic and measurements are recorded only when there is a significant change in the signal. Neuromorphic sampling has given rise to a new class of event-based sensors called dynamic vision sensors or neuromorphic cameras. The neuromorphic sampling mechanism utilizes low power and provides high-dynamic range sensing with low latency and high temporal resolution. The measurements are sparse and have low redundancy making it convenient for downstream tasks. In this paper, we present a sampling-theoretic perspective to neuromorphic sensing of continuous-time signals. We establish a close connection between neuromorphic sampling and time-based sampling - where signals are encoded temporally. We analyse neuromorphic sampling of signals in shift-invariant spaces, in particular, bandlimited signals and polynomial splines. We present an iterative technique for perfect reconstruction subject to the events satisfying a density criterion. We also provide necessary and sufficient conditions for perfect reconstruction. Owing to practical limitations in meeting the sufficient conditions for perfect reconstruction, we extend the analysis to approximate reconstruction from sparse events. In the latter setting, we pose signal reconstruction as a continuous-domain linear inverse problem whose solution can be obtained by solving an equivalent finite-dimensional convex optimization program using a variable-splitting approach. We demonstrate the performance of the proposed algorithm and validate our claims via experiments on synthetic signals
    corecore